Course Description: PR: Appropriate score on the UCF Math Placement exam, or MAC 1105C with a “C” (2.0) or better, or C.I. Inequalities. High degree polynomials. Graphs, rational, logarithmic, and exponential functions. Systems of equations. Properties and graphs of polynomials, rational, exponential and logarithmic functions, sequences and series, binomial theorem

Course Goals: This course is designed to familiarize the student with such fundamental mathematical concepts as polynomials, linear and quadratic equations, exponential functions, and logarithmic functions. Preparing the student for upper level mathematics. In a mathematics course, understanding is established not just by familiarity with concepts, but also by being able to work math problems associated with the concepts. Therefore, do not assume you know something unless you can work the problems. Pre-requisites of a course are what you are assumed to know before you take the course. Understanding pre-requisite knowledge is the responsibility of the student.

Required Materials:

1. **MyLabsPlus (MLP) Access Code for Precalculus Fourth Edition** by Sullivan and Sullivan. Temporary financial aid access code valid for two weeks will be provided, in case of need, to help you start working till you purchase your own code.
2. **iClicker2 student remote by iClicker**
3. **Four new 8.5”x11” Bluebook/greenbook** (books must be blank i.e. nothing written on or in). They will be used for testing.
4. **TI30XA calculator. The TI-30XA will be provided on tests only.** Absolutely no graphing calculator or programmable calculator should be used in class. It is best if you buy a TI30XA and practice with it. Proctors are not allowed to answers questions about calculator use during the test.
5. **Regular notebook** (spiral-bound, binder) to keep neat and organized notes.

Students must purchase access code to a web-based MyLabsPlus (MLP). **This can be purchased at the UCF bookstore or directly from the course website.** More information available during first class and in Webcourses. You will also need access to Webcourses@UCF. We will access MLP from Webcourses using a single sign on feature or www.ucf.mylabsplus.com. During testing you must close Webcourses or any other window except MLP test window.
Required Academic Activity: As of fall 2014, all faculty members are required to document students' academic activity at the beginning of each course. In order to document that you began this course, please complete the following academic activity by the end of the first week of classes, REQUIRED ACADEMIC ACTIVITY quiz in Webcourses no later than **Friday, January 11, 2019 by 11:59 EDT**. Failure to do so may result in a delay in the disbursement of your financial aid.

iClicker2:
We will be using the iClicker2 feedback system in every lecture to provide an interactive classroom environment. Be prepared to “click-in” your answers to the questions posed. Participation and attendance grades will reflect iClicker2 responses.

Purchase:
Be sure to purchase the correct iClicker2 for our course as there several types of clickers available. If desired, it may be possible to find an iClicker2 secondhand, and/or to sell your used iClicker2 at the end of the semester.

Registration:
Register at https://www.iclicker.com/remote-registration-form-for-classic. Be sure to enter your NID in the Student ID field on the web site, including the two leading letters. Students are required to register their iClicker2 before the second class meeting. A student who fails to register their iClicker2 by the end of the second week will not receive lecture participation points until registered and any zeros earned will not be changed.

Academic Honesty:
Using two iClicker2s during class is PROHIBITED. If a student “clicks in” for another student who is not in the classroom, both students will face disciplinary actions which will include a referral to student conduct and possibility receiving a ZF for the course grade.

Policy: The following policies will apply to the use of iClicker2 in the course:
- Each student is responsible for registering his/her own clicker ID under the correct student name as listed in MyUCF.
- iClicker2s must be registered at the start of the semester even if registered during a previous semester. Should a student replace an iClicker2 during the semester, the student is responsible for registering the new iClicker2 and informing the instructor.
- Using two iClicker2s during class is PROHIBITED. If a student “clicks in” for another student who is not in the classroom, both students will face disciplinary actions which will include receiving a ZF for the course grade.
- If a student fails to bring their iClicker2 to class, they will not receive class participation points associated with the clicker responses for that day.
- Students are expected to come to class prepared with fresh batteries for their iClicker2. Dead batteries will not excuse missed clicker responses.
- Unless otherwise specified, discussing clicker questions in class is NOT cheating; it is part of the learning exercise.
- A student who owns an iClicker can use it during class but there will be some questions that cannot be answered as the iClicker does not have numeric ability like the iClicker2.

Class Activities:
An iClicker will be used in class to answer questions to aid in student engagement. You must bring your iClicker to each class in order to participate.

MALL Activity: Student must spend at least 1 hour per week in the MALL. Weekly quizzes are IP locked to the MALL computers. Weekly quizzes can be taken unlimited number of times and the highest score captured. There is no quiz during test week. For the times the MALL is open and the rules and regulations of the MALL please log into the MALL web site: http://mall.cos.ucf.edu/

Schedule:

<table>
<thead>
<tr>
<th>Week</th>
<th>Begin</th>
<th>End</th>
<th>Sections</th>
<th>Exams</th>
<th>MALL</th>
<th>Holiday</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jan 7</td>
<td>Jan 14</td>
<td>F 1.1-1.3</td>
<td></td>
<td></td>
<td>No MALL</td>
</tr>
<tr>
<td>2</td>
<td>Jan 14</td>
<td>Jan 21</td>
<td>1.4-1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Jan 21</td>
<td>Jan 28</td>
<td>2.1 2.3-2.4</td>
<td></td>
<td></td>
<td>MLK Jan 21</td>
</tr>
<tr>
<td>4</td>
<td>Jan 28</td>
<td>Feb 4</td>
<td>2.7-2.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Feb 4</td>
<td>Feb 11</td>
<td>3.1-3.2</td>
<td>test 1</td>
<td></td>
<td>No Mall</td>
</tr>
<tr>
<td>6</td>
<td>Feb 11</td>
<td>Feb 18</td>
<td>3.3-3.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Feb 18</td>
<td>Feb 25</td>
<td>3.5-3.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Feb 25</td>
<td>March 4</td>
<td>4.1-4.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>March 4</td>
<td>March 11</td>
<td>4.4-4.6</td>
<td>test 2</td>
<td></td>
<td>No Mall</td>
</tr>
<tr>
<td>10</td>
<td>March 11</td>
<td>March 18</td>
<td>spring break</td>
<td>Test 1* (F, 1.1-1.6, 2.1, 2.3-2.4, 2.7-2.8)</td>
<td>No Mall</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>March 18</td>
<td>March 25</td>
<td>4.7-4.8</td>
<td></td>
<td></td>
<td>Spring Break</td>
</tr>
<tr>
<td>12</td>
<td>March 25</td>
<td>April 1</td>
<td>9.1-9.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>April 1</td>
<td>April 8</td>
<td>10.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>April 8</td>
<td>April 15</td>
<td>10.6-10.7</td>
<td>test 3</td>
<td></td>
<td>No Mall</td>
</tr>
<tr>
<td>15</td>
<td>April 15</td>
<td>April 22</td>
<td>Review</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>April 24</td>
<td>April 30</td>
<td>Final</td>
<td>Final Exam*</td>
<td></td>
<td>No Mall</td>
</tr>
</tbody>
</table>
*No student should make travel plans prior to or on test days.

Make-up Policy

Should you miss an exam because of your participation in official University-sponsored activities (e.g., intercollegiate athletics) please provide your Program Verification Form, religious observances (see restrictions), legal obligations (such as jury duty), military obligations, you may make up the exam. Make-ups must be made within one week of the missed assignment. However, you must obtain permission from your instructor ahead of time and provide valid and complete documentation in advance. (e.g. UCF program verification form, copy of military orders, jury notice)Otherwise, a grade of zero for the missed exam will be factored into your course average. It is at your professor’s discretion to determine whether the reason why you missed an exam grants a make-up exam. Personal travel plans or illness are not valid reasons for taking tests at a different date/time than scheduled.

Grading Scale:

<table>
<thead>
<tr>
<th>Average</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 – 100%</td>
<td>A</td>
</tr>
<tr>
<td>80 – 89%</td>
<td>B</td>
</tr>
<tr>
<td>70-79%</td>
<td>C</td>
</tr>
<tr>
<td>30-69% (must take final)</td>
<td>NC (Not for credit)**</td>
</tr>
<tr>
<td>Otherwise</td>
<td>F</td>
</tr>
</tbody>
</table>

The official method of contact is Knights email, always include your full name, NID, Math section number (not class meeting time). Grade discussion must be in person.

Grading Scale: Your final grade will be no less that the following:

<table>
<thead>
<tr>
<th></th>
<th>Option A</th>
<th>Option B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>MALL (1 hour)</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Quiz</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Class activity</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Test 1</td>
<td>Best 2 are 50%</td>
<td>0%</td>
</tr>
<tr>
<td>Test 2</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Test 3</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Final</td>
<td>25%</td>
<td>75%</td>
</tr>
</tbody>
</table>

Academic Honesty: All students are required to abide by the Academic Honesty Guidelines. We must develop, sustain and protect an academic environment of honesty, trust, and respect. Please read and understand all policies listed in http://creed.ucf.edu/points, http://www.goldenrule.sdes.ucf.edu. The Z Designation will be used in cases of academic dishonesty as decided by the UCF Office of Student Conduct.

This course is a NC course. Please see http://fyae.sdes.ucf.edu/faq * for complete details for NC policy.

Grading Scale:

**** Students must take the final exam and the final is comprehensive. Please note all test may be comprehensive because math builds on prior concepts.
The student’s grade average will be calculated using both options and the highest average will be used to determine the students’ final letter grade. You do not need to contact your instructor with your choice of option. Mastery points will be used to determine up to 5% bonus points.

-Note: At least your lowest Homework and lowest Class activity grades, mall, and quiz will be dropped prior to calculating your final overall grade.

Test dates and registration:	

Test dates	**Registration for test**
Test 1: February 6, 7, 8	Test 1 Registration: January 28 – February 5
Test 2: March 6, 7, 8	Test 2 Registration: February 28 – March 5
Test 3: April 10, 11, 12	Test 3 Registration: April 1 - 9
Final Exam: April 24, 25, 26, 29, 30	Final Exam Registration: April 15 - 23

Holidays:
- MLK day: Monday January 21
- Spring Break: March 11 - March 16
- Study Day: Tuesday April 23

Open MALL hours: Pre-Calculus students can only go to open MALL hours
- Monday/Wednesday: 14:30-16:30
- Tuesday/Thursday: 13:00-15:30
- Friday: 13:30-16:30
- Sunday: 13:00-18:00

TEST POLICIES & PROCEDURES:
Tests (except final) will be during your regularly scheduled class time on the date indicated in the course outline above. Therefore, no reservations are needed (except early testing). The date and time of the final test will be confirmed. Follow this check list:

- Have an active (not expired) access code, you should check your account before you go to test.
- Memorize your NID and password to log in to a computer and Webcourses.
- Make sure that you arrive early as the test will start on time. You will lose elapsed time if you are late or don’t know log in information and need to retrieve it.
- If you miss any of the first three tests that will be your dropped test if you miss 2 or more option B will be used to calculate your grade.
- You must have a UCF ID and put it front of desk, on left side of keyboard to make it easy for the staff to check.
- 8 ½ x 11 blue/green book with nothing written on it (see UCF bookstore or vending machine outside MALL or Student Union front desk).
- $.50 if you are going to use a locker (read instruction before you use a locker so you don't lose the money before it locks). No personal belonging are allowed during testing.
- Writing utensil.
- During a test, a password will be provided by a proctor or screens will be locked.
- NO cellphones, NO skateboards, NO calculators (you'll be loaned TI-30XA), NO smart watches. (If you don't want put them in a locker please don't bring them with you and don't jeopardize your grade.)
- During tests 1, 2, 3, or the final if your phone makes noise, is observed to be on, or you access it for any reason while you are in the testing room you will be given a zero on that test and possibility sent to
student conduct.

- At all times, you must abide by Mathematics Assistance and Learning Lab (MALL) Policies and Procedures, please visit http://mall.cos.ucf.edu as it is the student’s responsibility to read, understand and follow policies.
- The use of any algebra solving app, algebra solving calculator or algebra solving software is cheating and the student will be sent to student conduct for cheating.
- After taking the test and during the remaining portion of that test week the dissemination of the contents of the test by any means is unauthorized assistance and is a violation of the UCF code and the student will be sent to student conduct.

Learning Objectives:

F1 The Distance and Midpoint formulas
Use the distance formula. Use the midpoint formula

F2 Graphs of equations in two variables; intercepts; symmetry
Graph equations by plotting points. Find intercepts from a graph. Find intercepts from an equation. Test an equation for symmetry. Know how to graph key equations.

F3 Lines
Calculate and interpret the slope of a line. Graph lines given a point and the slope. Find the equation of a vertical line. Use the point-slope form of a line. Identify horizontal lines. Write the equation of a line in slope-intercept form. Identify the slope and y-intercept of a line from its equation. Find the equation of a line given two points. Graph lines written in general form using intercepts. Find equations of parallel lines. Find equations of perpendicular lines.

F4 Circles
Write the standard form of the equation of a circle. Graph a circle. Work with the general form of the equation of a circle.

1.1 Functions
Determine whether a relation represents a function. Find the value of a function. Find the difference quotient of a function. Find the domain of a function defined by an equation. Form the sum, difference, product and quotient of two functions.

1.2 The graph of a function.
Identify the graph of a function. Obtain information from or about the graph of a function.

1.3 Properties of Functions
Determine even and odd functions from a graph. Determine even and odd functions from the equation. Use a graph to determine where a function is increasing, decreasing, of constant. Use a graph to locate local maxima and local minima. Use a graph to locate the absolute maximum and the absolute minimum. Use a graphing utility to approximate local maxima and local minima and to determine where a function is increasing or decreasing. Find the rate of change of a function.

1.4 Library of functions; piecewise-defined functions
Graph the functions listed in the library of functions. Graph piecewise-defined functions.

1.5 Graphing techniques: Transformations
Graph functions using vertical and horizontal shifts. Graph functions using compressions and stretches. Graph functions using reflections about the x-axis and the y-axis.

1.6 Mathematical models: Building functions
Build and analyze functions.

1.7 Building mathematical models using variation
2.1 Properties of linear functions and linear models
Graph linear functions. Use average rate of change to identify linear functions. Determine whether a linear function is increasing, decreasing, or constant. Find the zero of a linear function. Build linear models from verbal descriptions.

2.2 Building linear models from data.
Draw and interpret scatter diagrams. Distinguish between linear and nonlinear relations. Use a graphing utility to find the line of best fit.

2.3 Quadratic functions and their zeros
Find the zeros of a quadratic function by factoring. Find the zeros of a function using the square root method. Find the zeros of a quadratic function by completing the square. Find the zeros of a quadratic function by using the quadratic formula. Find the point of intersection of two functions. Solve equations that are quadratic in form.

2.4 Properties of quadratic functions.
Graph a quadratic function using transformations. Identify the vertex and axis of symmetry of a quadratic function. Graph a quadratic function using its vertex, axis, and intercepts. Find a quadratic function given its vertex and one other point. Find the maximum or minimum value of a quadratic function.

2.5 Inequalities involving quadratic functions
Solve inequalities involving a quadratic function.

2.6 Building quadratic models from verbal descriptions and from data
Build quadratic models from verbal descriptions. Build quadratic models from data.

2.7 Complex zeros of a quadratic function
Find the complex zeros of a quadratic function.

2.8 Equations and inequalities involving the absolute value function
Solve absolute value equations. Solve absolute value inequalities.

3.1 Polynomial functions and models
Identify polynomial functions and their degree. Graph polynomial functions using transformations. Identify the real zeros of a polynomial function and their multiplicity. Analyze the graph of a polynomial function. Build cubic models from data.

3.2 The real zeros of a polynomial function
Use the remainder and factor theorems. Use Deserecrat’s rule of signs to determine the number of positive and negative real zeros of a polynomial function. Use the rational zeros theorem to list the potential rational zeros of a polynomial function. Find the real zeros of a polynomial function. Solve polynomial equations. Use the theorem for the bounds on zero. Use the intermediate value theorem.

3.3 Complex zeros; Fundamental theorem of algebra
Use the conjugate pairs theorem. Find a polynomial function with specified zeros. Find the complex zeros of a polynomial function.

3.4 Properties of rational functions
Find the domain of a rational function. Find a polynomial function with specified zeros. Find the complex zeroes of a polynomial function.

3.5 The graph of a rational function
Analyze the graph of a rational function. Solve applied problems involving rational functions.

3.6 Polynomial and rational inequalities
Solve polynomial inequalities. Solve rational inequalities.

4.1 Composite functions
Form a composite function. Find the domain of a composite function.

4.2 One-to-one functions; inverse functions
Determine whether a function is one-to-one. Determine the inverse of a function defined by a map or a set of ordered pairs. Obtain the graph of the inverse function from the graph of the function. Find the inverse of a function defined by an equation.

4.3 Exponential functions
Evaluate exponential functions. Graph exponential functions. Define the number e. Solve exponential equations.

4.4 Logarithmic functions
Change exponential statements to logarithmic statements and logarithmic statements to exponential statement. Evaluate logarithmic expressions. Determine the domain of a logarithmic function. Graph logarithmic functions. Solve logarithmic equations.

4.5 Properties of logarithms
Work with properties of logarithms. Write a logarithmic expression as a sum or difference of logarithms. Write a logarithmic expression as a single logarithm. Evaluate a logarithm whose base is neither 10 nor e. Graph a logarithmic function whose base is neither 10 nor e.

4.6 Logarithmic and exponential equations
Solve logarithmic equations. Solve exponential equations. Solve logarithmic and exponential equations using graphing utility.

4.7 Financial models
Determine the future value of a lump sum of money. Calculate effective rates of return. Determine the present value of a lump sum of money. Determine the rate of interest or the time require to double a lump sum of money.

4.8 Exponential growth and decay models; Newton’s law; logistic growth and decay models
Find equations of populations that obey the law of uninhibited growth. Find equations of populations that obey the law of decay. Use Newton’s law of cooling. Use logistic models.

4.9 Building exponential, logarithmic, and logistic models from data
Build an exponential model from data. Build a logarithmic model from data. Build a logistic model from data.

9.1 Conics
Know the names of the conics.

9.2 The parabola
Analyze parabolas with vertex at the origin. Analyze parabolas with vertex at (h,k). Solve applied problems involving parabolas.

9.3 The ellipse
Analyze ellipses with the center at the origin. Analyze ellipse with vertex at (h,k). Solve applied problems involving ellipse.

9.4 The hyperbola
Analyze hyperbola with the center at the origin. Analyze hyperbola with vertex at (h,k). Solve applied problems involving hyperbola.

10.5 Partial fraction decomposition
Decompose P/Q where Q has only nonrepeated linear factors. Decompose P/Q where Q has only repeated linear factors. Decompose P/Q where Q has only nonrepeated quadratic factors. Decompose P/Q where Q has only repeated quadratic factors.

10.6 Systems of nonlinear equations
Solve a system of nonlinear equations using substitution. Solve a system of nonlinear equations using elimination.

10.7 Systems of inequalities
Graph an inequality. Graph a system of inequalities.
Religious Policy: It is the practice of the University of Central Florida to reasonably accommodate the religious observances, practices, and beliefs of individuals in regard to admissions, class attendance, and the scheduling of examinations and work assignments. A student who desires to observe a religious holy day of his or her religious faith must notify his/her instructor in writing at the beginning of the term (prior to 5:00 PM on Friday, January 11) to be excused from classes to observe the religious holy day. Please note that documentation will be requested.

Course Accessibility Statement. The University of Central Florida is committed to providing access and inclusion for all persons with disabilities. Students with disabilities who need disability-related access in this course should contact the professor as soon as possible. Students should also connect with Student Accessibility Services (SAS) http://sas.sdes.ucf.edu/ (Ferrell Commons 185, sas@ucf.edu, phone: 407-823-2371). Through Student Accessibility Services, a Course Accessibility Letter may be created and sent to professors, which informs faculty of potential access and accommodations that might be reasonable. Determining reasonable access and accommodations requires consideration of the course design, course learning objectives and the individual academic and course barriers experienced by the student.

Campus Safety Statement. Emergencies on campus are rare, but if one should arise during class, everyone needs to work together. Students should be aware of their surroundings and familiar with some basic safety and security concepts. In case of an emergency, dial 911 for assistance. Every UCF classroom contains an emergency procedure guide posted on a wall near the door. Students should make a note of the guide’s physical location and review the online version at http://emergency.ucf.edu/emergency-guide.html Students should know the evacuation routes from each of their classrooms and have a plan for finding safety in case of an emergency. If there is a medical emergency during class, students may need to access a first-aid kit or AED (Automated External Defibrillator). To learn where those are located, see http://www.ehs.ucf.edu/AEDlocations-UCF (click on link from menu on left). To stay informed about emergency situations, students can sign up to receive UCF text alerts by going to my.ucf.edu and logging in. Click on “Student Self Service” located on the left side of the screen in the toolbar, scroll down to the blue “Personal Information” heading on the Student Center screen, click on “UCF Alert”, fill out the information, including e-mail address, cell phone number, and cell phone provider, click “Apply” to save the changes, and then click “OK.” Students with special needs related to emergency situations should speak with their instructors outside of class. To learn about how to manage an active-shooter situation on campus or elsewhere, consider viewing this video (https://youtu.be/NIKYajEx4pk).

Accessibility Related Accommodations: It is my goal that this class be an accessible and welcoming experience for all students, including those with disabilities that may impact learning in this class. If anyone believes the design of this course poses barriers to effectively participating and/or demonstrating learning in this course, please meet with me (with or without a Student Accessibility Services (SAS) accommodation letter) to discuss reasonable options or adjustments. During our discussion, I may suggest the possibility/necessity of your contacting SAS (Ferrell Commons 185; 407-823-2371; sds@ucf.edu) to talk about academic accommodations. You are welcome to talk to me at any point in the semester about course design concerns, but it is always best if we can talk at least one week prior to the need for any modifications.

Academic Integrity Statement. Students should familiarize themselves with UCF’s Rules of Conduct at http://osc.sdes.ucf.edu/process/roc According to Section 1,“Academic Misconduct,” students are prohibited from engaging in Unauthorized assistance: Using or attempting to use unauthorized materials, information or study aids in any academic exercise unless specifically authorized by the instructor of record. The unauthorized possession of examination or course-related material also constitutes cheating. Communication to another through written, visual, electronic, or oral means: The presentation of material which has not been studied or learned, but rather was obtained through someone else’s efforts and used as part of an
examination, course assignment, or project. Commercial Use of Academic Material: Selling of course material to another person, student, and/or uploading course material to a third-party vendor without authorization or without the express written permission of the university and the instructor. Course materials include but are not limited to class notes, Instructor’s PowerPoints, course syllabi, tests, quizzes, labs, instruction sheets, homework, study guides, handouts, etc. Falsifying or misrepresenting the student’s own academic work. Plagiarism: Using or appropriating another’s work without any indication of the source, thereby attempting to convey the impression that such work is the student’s own. Multiple Submissions: Submitting the same academic work for credit more than once without the express written permission of the instructor. Helping another violate academic behavior standards. For more information about Academic Integrity, students may consult The Center for Academic Integrity http://www.academicintegrity.org/ica/assets/FVProject.pdf For more information about plagiarism and misuse of sources, see “Defining and Avoiding Plagiarism: The WPA Statement on Best Practices” http://wpacouncil.org/node/9

Responses to Academic Dishonesty, Plagiarism, or Cheating. Students should also familiarize themselves with the procedures for academic misconduct in UCF’s student handbook, The Golden Rule http://goldenrule.sdes.ucf.edu/docs/goldenrule.pdf. UCF faculty members have a responsibility for students’ education and the value of a UCF degree, and so seek to prevent unethical behavior and when necessary respond to academic misconduct. Penalties can include a failing grade in an assignment or in the course, suspension or expulsion from the university, and/or a “Z Designation” on a student’s official transcript indicating academic dishonesty, where the final grade for this course will be preceded by the letter Z. For more information about the Z Designation, see http://goldenrule.sdes.ucf.edu/zgrade

Campus Safety Statement. Emergencies on campus are rare, but if one should arise during class, everyone needs to work together. Students should be aware of their surroundings and familiar with some basic safety and security concepts. In case of an emergency, dial 911 for assistance. Every UCF classroom contains an emergency procedure guide posted on a wall near the door. Students should make a note of the guide’s physical location and review the online version at http://emergency.ucf.edu/emergencyguide.html Students should know the evacuation routes from each of their classrooms and have a plan for finding safety in case of an emergency. If there is a medical emergency during class, students may need to access a first-aid kit or AED (Automated External Defibrillator). To learn where those are located, see http://www.ehs.ucf.edu/AEDlocations-UCF (click on link from menu on left). To stay informed about emergency situations, students can sign up to receive UCF text alerts by going to my.ucf.edu and logging in. Click on “Student Self Service” located on the left side of the screen in the toolbar, scroll down to the blue “Personal Information” heading on the Student Center screen, click on “UCF Alert”, fill out the information, including e-mail address, cell phone number, and cell phone provider, click “Apply” to save the changes, and then click “OK.” Students with special needs related to emergency situations should speak with their instructors outside of class. To learn about how to manage an active-shooter situation on campus or elsewhere, consider viewing this video (https://youtu.be/NIKYajEx4pk).

Deployed Active Duty Military Students. A deployed active duty military student who feels the need for a special accommodation due to that unique status should contact their instructor to discuss the circumstances. Please provide a paper copy of your military orders.

Disclaimer: Instructor has the right to make some adjustments to syllabus and any adjustment will be announced in class and via email and/or Webcourses announcements.